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Abstract. We present an analytical solution to the generalized discrete Poisson equation, a
matrix equation which has a tridiagonal matrix with fringes having an arbitrary value for the
diagonal elements. The results are of relevance to a variety of physical problems, which require
the numerical solution of the Poisson equation. As examples, the formula has been applied to
the solution of the electrostatic problem of tunnelling junction arrays with two and three rows.

Many physical problems require the numerical solution of the Poisson equation on a
rectangle [1-3]. In general, one uses the finite-difference method [1-3], where the rectangle
is replaced by arlV x k grid, and the Poisson equation is solved in the finite-difference
representation. In this way, the problem is reduced to the discrete Poisson equation (DPE)
on an N x k grid, a matrix equation having a tridiagonal matrix with fringes [1] (see
equations (1) and (2)). Here we present a study ofgdseeralizedDPE, a matrix equation
which has a tridiagonal matrix with fringes having an arbitrary value for the diagonal
elements, since there are many other problems [4—7] which involve such equations. In the
literature [1-4], many numerical methods have been developed to solve the generalized
DPE. Here we report an analytical way to solve these equations.

The generalized DPE on a¥ x k grid has the following form [1-3]

Au=p (1)

whereu is the discrete potential colump, is the column related to the source, afids
ak x k symmetric tridiagonal block matrix (the so-called ‘tridiagonal matrix with fringes’
[1]) given by

MN lN ON ON ON ON
Iv My Iy ... ... Oy Oy Oy
O 1y My ... ... Oy Oy Oy
A | " )
ON ON ON MN lN ON
Oy Oy Oy ... ... 1y My 1y
Oy Oy Oy .. Oy 1y My

Here in (2),My is the N x N symmetric tridiagonal matrix [5], with the same arbitrary
constant D as diagonal elements and the same constant 1 as off-diagonal elements.
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In addition,1y andOy are theN x N unit and null matrix, respectively. Thus, the matrix
A consists ofk x k submatrices, each submatrix consistinghofx N elements. We note
that an important special case of (2)lis= —4, which is the matrix form for the Poisson
equation on a rectangle arising from the difference method [1-3]. Also, we note that for
D = —4— Cy/C, one can easily check that (1) and (2) appear as the matrix equation for
the electrostatic problem of two-dimensional (2D) arrays of tunnel junctions [4] having the
same junction capacitancé€sand stray capacitanc&%. In this case, there ar¥ rows of
junctions andk columns of junctions for the rectangular 2D arrays being studied.

Our analytic inversion of the block tridiagonal matx of (2) consists of three steps:
() by applying the results of [5], we formally invert the block matAxinto another block
matrix A~1, (i) we find the eigenvalues and eigenfunctions for the submatrices of the block
matrix A%, (iii) we evaluate analytically each of the individual elements in the inverted
matrix A~1 by the Schur decomposition [8] scheme.

First, it is apparent that the inverted block matAx?® of the k x k block matrix A is
ak x k block matrix. By applying the results of [5], it is straightforward to show that the
(i, j)th submatrix{A~1};; in the inverted block matriA~! has the form

{A_l}ij _ _cosk(k +1-—1i - jl)ON_ —coshk+1—i—j)Oy
2sinh®y sinhk + 1)@y
fori,j =12 ...,k (3)
where theN x N matrix @y is defined by the following functional relation
—2cosh®y = My (4)

whereMy is the same as in (2). It is clear that the subma{tﬁxl}ij in the inverted block
matrix A~t is itself anN x N matrix.

Next, we will find the eigenvalues and eigenfunctions for the submatfites};; of
the block matrixA—1. This can be done by studying in turn the matridég and®,. For
this purpose, we first identify the eigenvalues and the eigenfunctions for the riviarix
which is a standard procedure [8]. After some algebra, we obtain the eigenyalyggor
the matrixMy as

A, = D+ 2cos mr
" N +1

form=12...,N (5)

and the corresponding orthogonal eigenfunctiorf8'} as

2 mni
m — [ = gin——— forn=1,2,...,N. 6
‘xm N+1 N+1 n ( )

We note that it is not difficult to deduce that sin®gy is a function of the matrixMy, its
eigenfunctions should be the same as (6) and its eigenvalues are directly related to that of
My by the functional form as determined by (4). Defining théh diagonal element of
—2cosh®y as—2 coshy,,, we obtain from (4) and (5)

mi
A,, = —2cosh,, = D + 2cos
+ N+1

form=12,...,N. )

Thus, by means of (6) and (7), we readily obtain the eigenvalues and eigenfunctions for the
submatricegA~1};;. The eigenvalues dfA~1};; can be conveniently expressed by a matrix
form, the diagonal matrixy;;, themth element of which can be directly obtained as

coshtk + 1 — i — jDA, —coshk +1—i — j)A,
2 sinha,, sinh(k + 1)A,,
form=212...,N (8

Aij(m) =
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wherel,, is given by (7). In addition, the corresponding orthogonal eigenfunctions are the
{xM} given by (6). We note that from (7) and (8) one can show that for fixédk, , i, j}
and D, the absolute value oh;;(m) is a decreasing function oi.

We are now in a position to evaluate analytically each ofthe N elements contained
in the submatrix{A~1};; by the Schur decomposition scheme, which states that any
well-defined symmetric matrix can be decomposed into a product of its diagonal matrix
sandwiched by its corresponding unitary matrix [8]. In other words, we can write

(A Y, =0A,;UT 9

whereU is the unitary matrix of A=1};;, and the(m, n)th element ofU is x(. Applying
(6) and (8) to (9), we obtain the, m)th element of submatrixA~1};; as

N N
AT =3 " x DA™ = i () Ay (n) (10)
n=1 n=1
where
ap(n) = xPxm = 2 sin nix sin nmz (11)
= TN 1T N +1LT N+1

and A;;(n) is given by (8).

Equation (10) is the key result of our paper. It provides the analytical solution for the
generalized DPE of (1). Some comments are as follows. First, for the simplest case of
N =1, there is only one term in (10), and its corresponds to that of the one-dimensional
(1D) generalized DPE [5]. Second, in general each matrix elemehtinas expressed by
(10) has very similar structures. It is a linear superposition of the diagonal Agf(n)

(which has the form (8) similar to that of the inverse matrix elements to the corresponding
one-dimensional problem), modulated by the sinusoidal coeffigigriz). In this way, if

we look at the rectangle for the generalized DPE, each additional row contributes one more
term to the sum in (10) and it will modify the magnitudecgf, (n) andA;;(n). Furthermore,

(10) is very useful for those systems where the number of rows is much less than that of
the columns. In particular, it can be applied to study the single charge tunnelling in the 2D
arrays of tunnel junctions [4] with equal junction capacitances and equal stray capacitances.
Here we apply (10) first to the two coupled 1D arrays (a 2D system With= 2) of
junctions, where analytical results are known [9], and then to derive analytical expressions
for the three-rows ¥ = 3) 2D system.

For the 2D system witlv = 2, there are only two terms on the right-hand side of (10).

In this case, (8) can be written as
+ +
le; N coshk+1—1 _m))» _ coshk +1— |l —m|)A (12)
2 sinhA= sinh(k + 1)A*
where the plus sign is for = 1 and minus sign is for = 2, with
—2costh* =D +1. (13)

Also, from (11) one has;1(1) = a22(1) = 211(2) = @22(2) = a12(1) = a21(1) = 1/2, and
@12(2) = a21(2) = —1/2. Thus, (10) reduces to only two kinds of expressions

Gim = {A Y 11m = (A Nooim = (R}, + R;,) (14)
Blm = {A_l}IZlm = {A_l}Zl,lm = %(Rl-;l - R];1) (15)

We note that (12)-(15) give the analytical inverse matrix elements for the matrix
appearing in the electrostatic problem of a particular configuration of two coupled 1D
arrays, where the values of the coupling capacitances are the same as those of the junction
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capacitances. In fact, (12)—(15) corresponds to equations (8)—(11) of [9] for the case where
the coupling capacitana€; equals the junction capacitance

Our next example is the three-rowl§ & 3) system, where there are three terms on the
right-hand side of (10). In this case, (8) can be written as

—2coshhy = D + /2 —2cosh, = D —2coshg = D — V2. (16)

By means of (10), one finds for the case of tie= 3 system, it is convenient to write the
block inverse matrix of (2) as a 8 3 block matrix

1Ge+Mb LB LG -Mh

Al= iB % ip 17
= 2ok k 2Pk (17)
3G =M LB 3G+ MY

WhereM,jl, G,, andB; arek x k matrices, and the elements Mfk‘l are given by
_ coshtk+1—1—m)ir—coshk +1— |l —m|)r

18
2 sinha sinh(k + 1) (18)

Im
with
—2coshh = D. (29)

In addition, the elements d&, and B, in (17) are given by (14) and (15), respectively,
except thatl* now has a new definition as

—2cosh* = D ++2. (20)

In summary, in this paper, we have solved the generalized discrete Poisson equation (1)
analytically deriving the formula (10) for the inversion of the tridiagonal matrix with fringes,
equation (2). Our results are very useful for a variety of problems in mathematics and
physics, which require the numerical solution of the Poisson equation. As examples, the
formula has been applied to 2D junction arrays with two and three rows, where very simple
forms for the inverse matrix are presented.
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