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Analytical solution of the generalized discrete Poisson
equation

G Y Hu†‡, Jai Yon Ryu† and R F O’Connell‡
† Department of Physics, Cheju National University, Cheju 690-756, Korea
‡ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-
4001, USA

Received 13 January 1998, in final form 20 July 1998

Abstract. We present an analytical solution to the generalized discrete Poisson equation, a
matrix equation which has a tridiagonal matrix with fringes having an arbitrary value for the
diagonal elements. The results are of relevance to a variety of physical problems, which require
the numerical solution of the Poisson equation. As examples, the formula has been applied to
the solution of the electrostatic problem of tunnelling junction arrays with two and three rows.

Many physical problems require the numerical solution of the Poisson equation on a
rectangle [1–3]. In general, one uses the finite-difference method [1–3], where the rectangle
is replaced by anN × k grid, and the Poisson equation is solved in the finite-difference
representation. In this way, the problem is reduced to the discrete Poisson equation (DPE)
on anN × k grid, a matrix equation having a tridiagonal matrix with fringes [1] (see
equations (1) and (2)). Here we present a study of thegeneralizedDPE, a matrix equation
which has a tridiagonal matrix with fringes having an arbitrary value for the diagonal
elements, since there are many other problems [4–7] which involve such equations. In the
literature [1–4], many numerical methods have been developed to solve the generalized
DPE. Here we report an analytical way to solve these equations.

The generalized DPE on anN × k grid has the following form [1–3]

Au = ρ (1)

whereu is the discrete potential column,ρ is the column related to the source, andA is
a k × k symmetric tridiagonal block matrix (the so-called ‘tridiagonal matrix with fringes’
[1]) given by

A =



MN 1N 0N . . . . . . 0N 0N 0N
1N MN 1N . . . . . . 0N 0N 0N
0N 1N MN . . . . . . 0N 0N 0N
. . . . . . . . . . . .

. . . . . . . . . . . .

0N 0N 0N . . . . . . MN 1N 0N
0N 0N 0N . . . . . . 1N MN 1N
0N 0N 0N . . . . . . 0N 1N MN


. (2)

Here in (2),MN is theN × N symmetric tridiagonal matrix [5], with the same arbitrary
constantD as diagonal elements and the same constant 1 as off-diagonal elements.
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In addition,1N and0N are theN ×N unit and null matrix, respectively. Thus, the matrix
A consists ofk × k submatrices, each submatrix consisting ofN × N elements. We note
that an important special case of (2) isD = −4, which is the matrix form for the Poisson
equation on a rectangle arising from the difference method [1–3]. Also, we note that for
D = −4− C0/C, one can easily check that (1) and (2) appear as the matrix equation for
the electrostatic problem of two-dimensional (2D) arrays of tunnel junctions [4] having the
same junction capacitancesC and stray capacitancesC0. In this case, there areN rows of
junctions andk columns of junctions for the rectangular 2D arrays being studied.

Our analytic inversion of the block tridiagonal matrixA of (2) consists of three steps:
(i) by applying the results of [5], we formally invert the block matrixA into another block
matrix A−1, (ii) we find the eigenvalues and eigenfunctions for the submatrices of the block
matrix A−1, (iii) we evaluate analytically each of the individual elements in the inverted
matrix A−1 by the Schur decomposition [8] scheme.

First, it is apparent that the inverted block matrixA−1 of the k × k block matrix A is
a k × k block matrix. By applying the results of [5], it is straightforward to show that the
(i, j)th submatrix{A−1}ij in the inverted block matrixA−1 has the form

{A−1}ij = −cosh(k + 1− |i − j |)ΘN − cosh(k + 1− i − j)ΘN

2 sinhΘN sinh(k + 1)ΘN

for i, j = 1, 2, . . . , k (3)

where theN ×N matrix ΘN is defined by the following functional relation

−2 coshΘN = MN (4)

whereMN is the same as in (2). It is clear that the submatrix{A−1}ij in the inverted block
matrix A−1 is itself anN ×N matrix.

Next, we will find the eigenvalues and eigenfunctions for the submatrices{A−1}ij of
the block matrixA−1. This can be done by studying in turn the matricesMN andΘN . For
this purpose, we first identify the eigenvalues and the eigenfunctions for the matrixMN ,
which is a standard procedure [8]. After some algebra, we obtain the eigenvalues{3m} for
the matrixMN as

3m = D + 2 cos
mπ

N + 1
for m = 1, 2, . . . , N (5)

and the corresponding orthogonal eigenfunctions{x(n)m } as

x(n)m =
√

2

N + 1
sin

mnπ

N + 1
for n = 1, 2, . . . , N. (6)

We note that it is not difficult to deduce that sinceΘN is a function of the matrixMN , its
eigenfunctions should be the same as (6) and its eigenvalues are directly related to that of
MN by the functional form as determined by (4). Defining themth diagonal element of
−2 coshΘN as−2 coshλm, we obtain from (4) and (5)

3m = −2 coshλm = D + 2 cos
mπ

N + 1
for m = 1, 2, . . . , N. (7)

Thus, by means of (6) and (7), we readily obtain the eigenvalues and eigenfunctions for the
submatrices{A−1}ij . The eigenvalues of{A−1}ij can be conveniently expressed by a matrix
form, the diagonal matrix∆ij , themth element of which can be directly obtained as

1ij (m) = −cosh(k + 1− |i − j |)λm − cosh(k + 1− i − j)λm
2 sinhλm sinh(k + 1)λm

for m = 1, 2, . . . , N (8)
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whereλm is given by (7). In addition, the corresponding orthogonal eigenfunctions are the
{x(n)m } given by (6). We note that from (7) and (8) one can show that for fixed{N, k, , i, j}
andD, the absolute value of1ij (m) is a decreasing function ofm.

We are now in a position to evaluate analytically each of theN×N elements contained
in the submatrix{A−1}ij by the Schur decomposition scheme, which states that any
well-defined symmetric matrix can be decomposed into a product of its diagonal matrix
sandwiched by its corresponding unitary matrix [8]. In other words, we can write

{A−1}ij = U∆ijU
T (9)

whereU is the unitary matrix of{A−1}ij , and the(m, n)th element ofU is x(n)m . Applying
(6) and (8) to (9), we obtain the(l, m)th element of submatrix{A−1}ij as

{A−1}(lm)ij =
N∑
n=1

x(l)n 1ij (n)x
(m)
n =

N∑
n=1

αlm(n)1ij (n) (10)

where

αlm(n) = x(l)n x(m)n =
2

N + 1
sin

nlπ

N + 1
sin

nmπ

N + 1
(11)

and1ij (n) is given by (8).
Equation (10) is the key result of our paper. It provides the analytical solution for the

generalized DPE of (1). Some comments are as follows. First, for the simplest case of
N = 1, there is only one term in (10), and its corresponds to that of the one-dimensional
(1D) generalized DPE [5]. Second, in general each matrix element inA−1 as expressed by
(10) has very similar structures. It is a linear superposition of the diagonal term1ij (n)

(which has the form (8) similar to that of the inverse matrix elements to the corresponding
one-dimensional problem), modulated by the sinusoidal coefficientαlm(n). In this way, if
we look at the rectangle for the generalized DPE, each additional row contributes one more
term to the sum in (10) and it will modify the magnitude ofαlm(n) and1ij (n). Furthermore,
(10) is very useful for those systems where the number of rows is much less than that of
the columns. In particular, it can be applied to study the single charge tunnelling in the 2D
arrays of tunnel junctions [4] with equal junction capacitances and equal stray capacitances.
Here we apply (10) first to the two coupled 1D arrays (a 2D system withN = 2) of
junctions, where analytical results are known [9], and then to derive analytical expressions
for the three-rows (N = 3) 2D system.

For the 2D system withN = 2, there are only two terms on the right-hand side of (10).
In this case, (8) can be written as

R±lm ≡ 1lm = cosh(k + 1− l −m)λ± − cosh(k + 1− |l −m|)λ±
2 sinhλ± sinh(k + 1)λ±

(12)

where the plus sign is forn = 1 and minus sign is forn = 2, with

−2 coshλ± = D ± 1. (13)

Also, from (11) one hasα11(1) = α22(1) = α11(2) = α22(2) = α12(1) = α21(1) = 1/2, and
α12(2) = α21(2) = −1/2. Thus, (10) reduces to only two kinds of expressions

Glm ≡ {A−1}11,lm = {A−1}22,lm = 1
2(R

+
lm + R−lm) (14)

Blm ≡ {A−1}12,lm = {A−1}21,lm = 1
2(R

+
lm − R−lm). (15)

We note that (12)–(15) give the analytical inverse matrix elements for the matrix
appearing in the electrostatic problem of a particular configuration of two coupled 1D
arrays, where the values of the coupling capacitances are the same as those of the junction
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capacitances. In fact, (12)–(15) corresponds to equations (8)–(11) of [9] for the case where
the coupling capacitanceCc equals the junction capacitanceC.

Our next example is the three-rows (N = 3) system, where there are three terms on the
right-hand side of (10). In this case, (8) can be written as

−2 coshλ1 = D +
√

2 − 2 coshλ2 = D − 2 coshλ3 = D −
√

2. (16)

By means of (10), one finds for the case of theN = 3 system, it is convenient to write the
block inverse matrix of (2) as a 3× 3 block matrix

A−1 =


1
2(Gk +M−1

k )
1√
2
Bk

1
2(Gk −M−1

k )

1√
2
Bk Gk

1
2Bk

1
2(Gk −M−1

k )
1√
2
Bk

1
2(Gk +M−1

k )

 (17)

whereM−1
k , Gk, andBk arek × k matrices, and the elements ofM−1

k are given by

Rlm = cosh(k + 1− l −m)λ− cosh(k + 1− |l −m|)λ
2 sinhλ sinh(k + 1)λ

(18)

with

−2 coshλ = D. (19)

In addition, the elements ofGk and Bk in (17) are given by (14) and (15), respectively,
except thatλ± now has a new definition as

−2 coshλ± = D ±
√

2. (20)

In summary, in this paper, we have solved the generalized discrete Poisson equation (1)
analytically deriving the formula (10) for the inversion of the tridiagonal matrix with fringes,
equation (2). Our results are very useful for a variety of problems in mathematics and
physics, which require the numerical solution of the Poisson equation. As examples, the
formula has been applied to 2D junction arrays with two and three rows, where very simple
forms for the inverse matrix are presented.
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